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The generation of Lamb waves in isotropic layers by phase matching of an obliquely
incident, bounded beam is examined experimentally, and the results compared to
theoretical predictions obtained from a simplified model of the process. It is demonstrated
experimentally that the range of incident angles over which any given mode can be
generated is dependent upon the size of the transducer used to excite the mode, its frequency
content and the pressure distribution across its surface. Experimentally obtained excitation
amplitude versus incident angle curves are given for various Lamb wave modes and
transducers of different sizes and vibrational characteristics. These experimental amplitudes
are compared to theoretical curves based on a simplified model of the generation process.
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1. INTRODUCTION

The use of an obliquely incident, bounded ultrasonic beam for the generation of Lamb
waves in isotropic layers was analyzed both theoretically and experimentally by Viktorov
et al. [1], in 1965. The main parts of the work were later reproduced in Viktorov’s book
on Rayleigh and Lamb waves [2]. Of several detailed observations made in these
investigations, one was that for optimal generation of a mode of a given wavenumber, k,
the angle of incidence should be ‘‘in the neighborhood’’ of the Snell’s law angle,
ui =sin−1 (k/kw), where kw represents the wavenumber of the wave in the incident medium
[2]. Such a choice of incident angle was being used by experimentalists utilizing Lamb
waves for non-destructive evaluation purposes [3–5] even before Viktorov’s analysis. The
use of such an angle no doubt arose from the theory of (infinite) plane wave
reflection/refraction at planar interfaces. In those cases, which are primarily of academic
interest of for approximating real experimental conditions, Snell’s law holds exactly as a
result of satisfaction of boundary conditions along the entire (infinite) interface.

Another result of Viktorov’s analysis, which forms the basis for the current study, was
that for excitation by an incident beam of finite width there is actually a continuous
dependence of the excitation amplitude of any mode on the angle of incidence. This can
be understood if it is recalled that an incident beam is equivalent to a continuous spectrum
of incident plane waves whose wave vectors are distributed about the central wave vector
of the incident beam. The amplitude of each plane wave component ultimately determines
the excitation strength of the guided wave modes.
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It should be noted that beam spreading was completely neglected in Viktorov’s (and the
present) analysis and hence the continuous dependence of the excitation amplitude of a
given mode on the angle of incidence is not due to beam spreading. Beam spreading gives
rise to additional physical phenomena, as discussed by Zeroug et al. [6].

In this paper, the phase matching method of generating guided waves is re-analyzed,
with particular attention being focused on the relationship between the angularly
dependent excitation amplitude of a given mode and the physical parameters of the
transducer used to excite the mode. Most of the theoretical analysis relies on an extension
of Viktorov’s work to encompass arbitrary transducer pressure distributions and generally
anisotropic layers [7]. Additional details of the present work can be found in references
[8, 9]. This paper presents a more in-depth and systematic treatment of the posed problem.

2. ANALYSIS

Two common arrangements for implementing the phase matching method are shown
in Figure 1. In the immersion approach, the layer is immersed in a fluid bath; whereas in
the contact method, a (usually non-viscous) couplant is used to couple ultrasonic energy
from an angled wedge into the layer. In either case, a finite sized transducer emits a beam
of ultrasonic waves which subsequently impinges on, and generates waves in, the layer.
The pressure profile across the face of the incident beam is denoted by p(a), with a denoting
a co-ordinate parallel to the transducer face (i.e., perpendicular to the beam axis).

The incident beam will cause longitudinal and transverse waves to be excited in the layer,
each with their own excitation amplitudes. For observation distances sufficiently far from
the excitation region, the collection of generated and multiply mode converted waves in
the layer can be most efficiently interpreted, both mathematically and conceptually, as a
summation of the guided wave modes permissible in the layer with certain amplitudes [10].

An analysis of a two-dimensional model of the phase matching method (also known as
the ‘‘wedge’’ method), applicable to arbitrary pressure distributions and generally
anisotropic layers has recently been carried out [7]. In this analysis, the transducers were

Figure 1. Schematic illustrations of (a) the immersion, and (b) the contact methods of generating Lamb waves
using obliquely incident ultrasonic beams.
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assumed to be infinite in one dimension, thus creating a state of plane strain deformation
in the layer. Most of the analysis in reference [7] was focused on the time harmonic case,
althought the effect of incident pulses was also briefly considered. The main assumption
which was made in reference [7] was that the effect of the incident beam on the layer was
equivalent to a prescribed traction distribution over the area of the layer insonified by the
incident beam. The prescribed traction distribution was taken to be equal to that which
would be produced by the incident beam alone. While this assumption considerably
simplifies the boundary value problem, it restricts the applicability of the results to cases
in which the medium containing the incident beam has a small acoustic impedance relative
to that of the layer. This is essentially the same assumption made by Viktorov [1, 2].

Denoting by An(z, v, ui) the ‘‘z’’ dependent amplitude with which any propagating
Lamb wave mode ‘‘n’’ of the layer is excited by the incident beam of frequency v and
incident angle ui , it was shown that,

An(z, v, ui)=
ṽny(b/2)

4Pnn

e−iknz

cos (ui) g
a

−a

p(a) eixa da, (1)

where

x,
kn − kw sin ui

cos ui
. (2)

In equation (1), ṽny(b/2) denotes the complex conjugate of the ‘‘y’’ component of the
particle velocity of mode ‘’n’’ at the top surface of the layer (where y= b/2) and Pnn denotes
the time average power flux carried along the layer by the mode n per unit waveguide width.
The function p(a) represents the variation of the pressure over the width of the incident
beam.

For symmetric Lamb wave modes, the out of plane particle velocity at the top surface
of the layer can be expressed as [11]

vny(v, b/2)=−ktl sin (ktlb/2) cos (ktsb/2)+
k2

ts − k2
n

2kts
cos (ktlb/2) sin (ktsb/2), (3)

whereas for anti-symmetric modes, the out of plane particle velocity at the top surface can
be expressed as,

vny(v, b/2)= ktl cos (ktlb/2) sin (ktsb/2)+
k2

n − k2
ts

2kts
sin (ktlb/2) cos (ktsb/2). (4)

The time average power flux (per unit width) of mode n is given by [11, p. 159],

Pnn =−1
2 Re g

b/2

y=−b/2

(ṽn · Tn) · êz dy. (5)

In these expressions, the ‘‘transverse wavenumbers’’, ktl and kts are defined as
k2

ts =(v/vs)2 − k2
n and k2

tl =(v/vl)2 − k2
n , with vs and vl representing the shear and

longitudinal wave velocities, respectively. In addition, Tn denotes the stress tensor of mode
n, êz denotes a unit vector in the z (propagation) direction, and Re denotes the real part.
Both vny and Pnn are functions of frequency, v or, alternatively, of the point on the
dispersion curve at which mode n is generated.

The dependence of the modal amplitude, An(z, v, ui), on the wedge angle is partially
explicit in equation (1) in the cos (ui) term, and partially implicit through the x terms in
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the integral. The integral can be recognized as the Fourier transform of the applied traction
distribution, p(a), with (real) transform parameter x.

To make the dependence of the excitation amplitudes on incident angle completely
explicit, a specific form must be assumed for the transducer pressure distribution, p(a). In
the experimental work reported in later sections, the actual pressure distributions of several
transducers were measured and used in equation (1), which was then numerically
integrated to obtain An(z, v, ui).

To proceed further analytically, however, with the goal of understanding the physics of
the excitation process through a simple approximation, it is assumed that the transducer
produces a parabolic pressure distribution of the form,

p(a)= 8p0 01−
a2

(D/2)21 ,

0,

if =a=ED/2,

if =a=qD/2,
(6)

where p0 represents the maximum pressure which occurs at the center of the
transducer face, a=0, and the transducer has a width D. Substituting this pressure
distribution into equation (1) and evaluating the integral yields for the amplitude of generic
mode ‘‘n’’,

An(z, v, ui)=
2p0ṽny(b/2) e−iknz

PnnD cos (ui)x2 $2 sin (xD/2)
Dx

−cos (xD/2)% . (7)

Equation (7) can be used to predict the excitation amplitude of any propagating Lamb
wave mode given the transducer and wedge parameters such as frequency (v), transducer
width (D) and incident angle (ui).

For a given frequency, there will be a finite number of real wavenumbers, kn ,
n${1, 2, 3, . . .}, corresponding to symmetric and antisymmetric Lamb wave modes,
satisfying the dispersion equation of the layer. Using a particular wavenumber in equation
(7), and calculating vny(b/2) and Pnn for that mode, at the given frequency, reduces the right
side to a function of ui alone, for given z and beam width, D. Of course, several propagating
(and non-propagating) modes may be simultaneously excited by the incident beam and,
therefore, the total field in the layer will correspond to a summation over all of the modes
of the layer at the given frequency.

As an example of the use of equation (7) to predict the excitation amplitudes of Lamb
waves for given transducer and wedge parameters, consider a 1·5 MHz transducer of a
given size D, insonifying a 1·0 mm aluminum layer, with assumed longitudinal and shear
wave speeds of 6·3 and 3·1 mm/ms, respectively. For the given frequency thickness product
of 1·5 MHz mm, only the A0 and S0 modes propagate in the layer (see Figure 4). In Figure 2
is shown the predicted normalized excitation amplitudes of the A0 and S0 modes as
functions of the ‘‘Snell’s law phase velocity’’ and incident angle, for three different size
transducers, viz., D=12·7 mm (1/2 inch), 38·1 mm (1·5 inch) and 254 mm (10·0 inch). The
‘‘Snell’s law phase velocity’’ is defined as V0

ph,vw/sin (ui), where vw represents the
longitudinal wave speed in the wedge or immersion liquid (which was assumed to be
1·5 mm/ms, thus simulating water).

The curves have been simultaneously normalized so that the maximum value attained
by either modal amplitude is unity. Note that the incident angle scale on the bottom
decreases towards the right in a non-linear manner, since the Snell’s law phase velocity
scale, which is related to the sine of the incident angle, is linear.
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Figure 2. Theoretically predicted excitation amplitudes of the A0 and S0 modes, at fd=1·5 MHz mm, as a
function of the Snell’s law phase velocity, V0

ph (see equation (9)) and the incident angle, ui . (a) Beam width,
D=12·7 mm; (b) D=38·1 mm; (c) D=254 mm.

There are several features of the plots in Figure 2 which deserve mentioning. First of
all, for a frequency thickness product of 1·5 MHz mm, the phase velocities of the S0 and
A0 modes in an aluminum layer are 5·14 and 2·54 mm/ms, respectively. Using Snell’s law,
this gives maximum excitation angles of 17 and 36 degrees (using vw =1·5 mm/ms for the
incident velocity) respectively. As can be seen from Figure 2, the excitation spectra do
indeed have maxima very close to these values.† This becomes particularly clear for the
larger diameter transducers.

A second feature to note is that the maximum excitation amplitude of the A0 mode is,
at this frequency thickness product, larger than the maximum excitation amplitude of the
S0 mode. This has to do with the fact that the A0 mode, at the given fd, has a predominantly
out of plane particle displacement and is, therefore, efficiently generated by the normal
traction which the incident wave applies to the layer. The S0 mode, on the other hand,
with its predominantly in plane particle motion (at the given fd), does not couple as
efficiently to the normally applied pressure field. Thirdly, note that even for the same size
transducer, the width of the excitation spectrum of the A0 mode is narrower than that of
the S0 mode. This is essentially due to the fact that at the given frequency thickness

† It can be shown by differentiating equation (1) with respect to ui and taking the limit as ui:sin−1 (kn/kw),
that An(z, v, ui) is not a maximum at the Snell’s law angle. The actual maximizing angle is, however, generally
very close to this angle.
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product, the wavelength of the A0 mode (lA0 =1·7 mm) is roughly one half that of the S0

mode (lS0 =3·4 mm).
One can also note that the width of each excitation spectrum decreases as the size of

the transducer, D, increases. It can be shown [7] that the width of the excitation spectrum
(considered a function of the Snell’s law phase velocity) normalized by the Snell’s law phase
velocity itself can be written in the form

DV
V0

ph
=

(K/p)(l0/D� )
1− (K/2p)2(l0/D� )2 , (8)

where DV represents the width of the excitation spectrum at its −9 dB point (i.e., where
the amplitude drops by 1/e from its maximum), and K is a constant depending upon the
pressure profile of the transducer. For a parabolic source, K1 5·852, whereas for a piston
source, K1 4·398. Also, the other quantities appearing in equation (8) are,

D�,D/cos (ui), V0
ph,vw/sin (ui), l0,V0

ph/f, (9)

with f=v/2p representing the frequency of the transducer. Note that the width of the
excitation spectrum (as a function of Snell’s law phase velocity) is only a function of the
dimensionless parameter l0/D� . Recognizing D� as the length of the region over which
the incident beam contacts the layer, it can be concluded that the width of the ‘‘phase
velocity spectrum’’ is only dependent upon the ratio of the loading length to the wavelength
of the mode being generated evaluated at the Snell’s law phase velocity, V0

ph .
The width of the phase velocity spectrum is directly related to the potential phase

velocity measurement error which could occur when using goniometric techniques such as
the leaky Lamb wave technique to measure phase velocities of guided waves. It is
customary when using such techniques to infer the phase velocity of generated modes from
the incident angle of the insonifying transducer using Snell’s law. As shown by Figure 2,
however, modes may be excited with appreciable amplitudes even if the incident angle does
not satisfy Snell’s law. It is therefore important to consider finite source effects in addition
to angular positioning errors when estimating potential phase velocity errors using the
phase matching technique.

Figure 3 is a plot of DV/V0
ph as a function of l0/D� for a source with parabolic pressure

variation. As can be seen, in order to keep the width of the phase velocity spectrum to
within 10% of the predicted Snell’s law phase velocity, the insonification region must be
at least 20 times larger than the wavelength of the mode being generated. This number
will, in actual experimental arrangements, be reduced somewhat due to the spreading of

Figure 3. The relative width of the phase velocity spectrum versus the ratio of loading length (D� ) to the Snell’s
law wavelength, l0 (see equation (9)).
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the incident. Beam spreading will, among other things, increase the size of the
insonification region.

There are, therefore, at least two sources of error in the goniometric measurement of
phase velocity; i.e., errors in the actual incident angle, and errors due to finite source effects.
In general, on the basis of our numerical calculations, the errors due to finite source effects
are almost always at least an order of magnitude larger than those due to errors in incident
angle. This is due mainly to the high accuracy of angular positioning systems currently
available.

For a given layer thickness, the wavelength of any given mode varies, in general, from
point to point on the mode’s dispersion curve. A given size transducer will therefore be
more or less selective to a given mode depending on where on its dispersion curve it is
generated. There are, therefore, regions of the dispersion curves where, due to small
wavelengths, the finite size of the transducer is not of great importance. On the other hand,
some regions of the dispersion curves represent very large wavelengths and therefore the
selectivity of even large (one inch, say) transducers to a particular phase velocity is very
low. As an example, in Figure 4, is shown the −9 dB width of the phase velocity spectra
at various points on the dispersion curves of different modes. The layer properties were
that of aluminum (VL =6·3 mm/ms, VT =3·1 mm/ms, 7=2·76 g/cm3) and its thickness was
1·0 mm. The size of the transducer used was D=12·7 mm, and the longitudinal wave speed
of the wedge was 1·5 mm/ms. The vertical bars represent the range of incident angles over
which the amplitude of the particular mode would be greater than −9 dB of the maximum,
which occurs when the incident angle is chosen according to Snell’s law.

As can be seen from Figure 4, for a given fixed frequency, the width of the excitation
spectra decreases as the incident angle increases (or phase velocity decreases). This is due
to the fact that as the incident angle increases, the insonification region increases and
simultaneously, the phase velocity decreases, both giving rise to an increase in the ratio
of D� to l0. The width of the excitation spectra also decreases as the frequency increases
for a given incident angle (or phase velocity). This is due to the decreasing wavelength with
increasing frequency.

In the following sections, the details and results of an experimental program designed
to assess the validity of the previous conclusions will be discussed.

Figure 4. The dispersion curves of an aluminum layer. The vertical bars represent the theoretical −9 dB widths
of the phase velocity spectra for various modes, using the same size transducer of D=12·7 mm.
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3. EXPERIMENTAL APPARATUS

In this section, we report on experiments aimed at assessing the validity of the
theory presented in the previous sections. A direct measurement of the pressure
variation across the transducer face, p(a), was performed for several transducers of
varying frequencies and nominal sizes. Using the measured profiles, equation (1)
was numerically integrated to obtain theoretical predictions for the variation of
the excitation amplitude of a given mode as a function of the incident angle of
the transducer. The actual variation of excitation amplitude of several modes was
directly measured using a novel experimental arrangement, and the results were compared
to the theoretical predictions. Although beam spreading was neglected in the
theoretical analysis, it was partially accounted for in the experiments because the ‘‘actual’’
transducer sizes (Da) were taken as the −14 dB points in the experimentally obtained p(a)
curves. Due to beam spreading, this width exceeded the physical (nominal) size of the
transducer.

The modes/points chosen for study are listed in Table 1. The choice of these points is
based upon consideration of the excitability of the modes and in an attempt to maximize
the group velocity. The chosen points cover a moderate range of frequencies and
wavelengths. To isolate an individual mode for the purposes of theoretically generating
the excitation amplitude versus incident angle curve, that mode’s wavenumber kn , particle
velocity field at the surface of the layer ṽny(b/2) and the power flux Pnn were calculated for
a frequency equal to the center frequency of the transducer used. This information was
then used, along with the experimentally measured pressure profile of the transducer, in
equation (1).

Standard, commercially available transducers of two different nominal frequencies (1·0
and 2·25 MHz) were used in this study. Three 1·0 MHz transducers and two 2·25 MHz
transducers of different diameters were used. All transducers had circular piezoelectric
elements with nominal diameters ranging from 6·35 to 19·05 mm. The transducers were
driven by approximately ten cycles of a (rectangular) gated sinusoidal tone burst with a
center frequency of 0·9 MHz for the 1·0 MHz nominal transducers and 2·25 MHz for the
nominal 2·25 MHz transducers. The chosen number of cycles was sufficient to ensure a
frequency bandwidth of less than 15% at the −6 dB level. The use of a rectangular gate
caused the presence of side lobes in the frequency spectrum which were, in all cases, at
around a −15 dB level compared to the principal maximum. High precision computer
controlled linear translation and rotation stages were used to perform the experiments. The
data acquisition system included a 100 MHz Sonix STR8100 digitizer and an NCR 386
personal computer.

T 1

Modes used in the experimental study and some of their acoustical
properties

fd Vphase Wavelength
Mode (MHz mm) (mm/ms) (mm)

S0 0·914 5·38 5·8
S0 1·013 5·30 2·4
S1 4·572 5·78 2·6
S2 7·143 6·47 2·9
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T 2

Nominal and ‘‘actual’’ diameters of the five transducers tested

Frequency Nominal Actual
(MHz) diameter (mm) diameter, Da(mm)

0·90 19·05 27·69
0·90 12·70 21·00
0·90 9·52 18·65
2·25 12·70 15·68
2·25 6·35 9·72

4. TRANSDUCER CHARACTERIZATION

The five transducers used in this study were first characterized by experimentally
measuring the pressure profiles across their diameter. In an immersion tank, the transducer
was used as a sender and a roughly 1 mm diameter pin-ducer, located at twice the near
field of the sender, was used as a receiver. After locating the maximum in the pressure
profile (at the center of the transducer) the transducer was traversed over a 20 mm distance
with a 0·2 mm increment on either side of the maximum, giving a total of 400 points and
40 mm scan length. The data was smoothed by replacing each measured point with the
average of it with its nearest two neighbors; a process which was done twice. The profiles
were then normalized to unity maximum by dividing by the maximum value. The data
points on the left and right of the maximum with amplitudes below 0·2 (i.e., −14 dB) were
forced to decay exponentially with distance from the center. This was done to remove the
electrical noise which was present at this low amplitude level. The width of the profile at
the 0·2 (−14 dB) level was called the ‘‘actual’’ size of the transducer, Da . The actual
diameters are listed, along with the nominal (physical) size in Table 2 for the five
transducers tested. Shown in Figure 5 are two typical measured profiles processed in this
manner.

A cubic spline interpolant was numerically obtained for each measured transducer
pressure profile. This provided a numerical approximation to the experimentally obtained
pressure distribution profiles, and served as p(a) in the integrand of equation (1). Utilizing

Figure 5. Two typical processed transducer pressure profiles: (a) 1·0 MHz transducer; (b) 2·25 MHz transducer.
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the measured profiles, equation (1) was numerically integrated to obtain the predicted
amplitude versus incident angle curves of specific Lamb wave modes.

5. DIRECT MEASUREMENT OF EXCITATION AMPLITUDES

In order to experimentally measure the excitation amplitude of a given mode for a given
transducer, an immersion setup was employed. A plate of a given thickness (b) was
mounted onto a computer controlled rotatable turntable which was immersed in a water
tank. The transducer was also immersed and aligned relative to the plate so that the center
of the emitted beam struck as nearly as possible the axis of rotation of the plate (Figure 6).
The incident beam excited Lamb waves in the plate which propagated along the plate until
reaching the end, where they were reflected and returned to the sender. The amplitude of
the returning Lamb wave was detected by the transducer due to leakage into the
surrounding water. The distance from the axis of rotation to the end of the plate was two
inches (50·8 mm) in all cases. The distance from the transducer to the axis of rotation was
twice the near field of the sender (2N), calculated based on the driving frequency and
nominal diameter of the transducer.

The maximum amplitude in a gated portion of the received signal was recorded as the
plate was rotated over a range of angles which depended upon the mode chosen. The
angular increment in each case was 0·2 degrees. Care was required in gating the received
signal to isolate a given mode since in many cases modes with nearly coincident phase
velocities were excited. Time gates to isolate given modes were chosen according to
theoretically calculated group velocities and known propagation lengths. This was not a
problem in most cases, since differing group velocities caused separation of the modes, but
it proved to be a problem when the group velocities of the generated modes was also
similar.

In order to excite different modes, as well as the same mode with different wavelengths,
while using only two different frequencies, aluminum plates of four different thicknesses
were used. For the 0·9 MHz transducers, a 1·016 mm thick plate was used to isolate the
S0 mode at a frequency thickness product (fd) of 0·9144 MHz mm. The 2·25 MHz
transducers were used on plates of 0·432, 2·032 and 3·175 mm to generate modes S0, S1

and S2 at fd’s of 1·01, 4·57 and 7·14 MHz mm, respectively. The experimentally obtained
excitation amplitude versus incident angle curves were normalized to unity maximum in
order to compare them to the theoretically generated curves.

Figure 6. The experimental arrangement for monitoring the Lamb wave excitation amplitudes as functions
of incident angle. The incident beam strikes an immersed plate along its axis of rotation, and the generated Lamb
waves, after reflecting from the end of the plate, return to the sender.
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6. RESULTS AND DISCUSSION

Results for the excitation of the S0 mode in a 1·016 mm aluminum plate using three
different size transducers, all driven at 0·9 MHz, are presented in Figure 7. The open circles
connected by dashed lines represent the experimentally obtained profiles and the solid lines
represent theoretical curves. For all of the results to be presented, data was collected in
0·25 degree increments, but for clarity of presentation, not all of the data points are shown
by open circles. The lines connecting the open circles are actual data points, not
interpolations between data points.

Note that the normalized excitation amplitudes are plotted versus the incident angle
using a linear scale for the angle, not the non-linear scale used in previous figures. Because
of uncertainty in absolute measurement of incident angle, the theoretical curves were
shifted when necessary (in no case by more than 1 degree) to make the principal maxima
of the theoretical and experimentally obtained curves coincide.

Several observations can be made concerning these results. First, there is good overall
agreement between theory and experiment for the 27·69 (a) and 21·00 mm (b) transducers,
whereas the experimental curve for the 18·65 mm transducer (c) is considerably wider than
the theoretically predicted curve. Each set of experiments was performed twice to assess
repeatability, which was excellent in all cases. The sets of amplitude profiles which were
obtained on subsequent runs were, apart from small shifts in the angle, indistingushable
from one another.

Notice that as the (actual) size of the transducer decreases, the widths of both the
theoretical and experimental profiles increase. It may be noted that in this set of

Figure 7. Theoretical (solid line) and experimental (light line, open circles) excitation amplitude versus incident
angle curves for the S0 Lamb wave mode, at a frequency–thickness product of fd=0·9144 MHz mm. All
theoretical and experimental curves have been normalized to unity for comparison. (a) Actual transducer width,
Da =27·69 mm; (b) Da =21·0 mm; (c) Da =18·65 mm.
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experiments, the only variable is source size; the other critical parameters such as Snell’s
law angle (based on the S0 mode phase velocity at the given fd product), excitation
frequency (hence the wavelength in the plate, l0) and the wavelength in the coupling
medium being held constant.

The −1·80% and 12·26% difference between the −6 dB widths of the theoretical and
experimental profiles for the sources of 27·69 and 21·00 mm, respectively, are considered
acceptable, especially considering differences between theoretical assumptions and the
actual experimental setup. The difference associated with the source of 18·65 mm is 53·0%
and this is considered too large to attribute to experimental error. It is believed that beam
spreading effects, which have been neglected in the theory but are of course present in the
experiment, play a major role in the deviation. Beam spreading effects become more
important when either the nominal size of the transducer or its driving frequency decrease.
Based on the nominal diameters of the transducers used in cases (a), (b) and (c), along
with the driving frequency of 0·9 MHz, and a speed in water of 1·5 mm/ms, the half-angles
of beam divergence calculated using the standard formula sin (a)=0·6vwater/fD are a=3·0,
4·5, and 6·0 degrees, respectively.

In a second set of experiments, the S0 mode was generated at an fd product of
1·0125 MHz mm using a 2·25 MHz transducer and an aluminum plate of 0·432 mm
thickness. This is nearly the same point as generated in the previous experiments (with
fd=0·9144) but the frequency was more than doubled and the plate thickness was
correspondingly less than half, so that fd was kept roughly the same. A transducer with
an actual (measured) diameter of Da =15·68 mm was used. The measured and theoretically
predicted amplitude profiles are shown in Figure 8(a) along with a repetition of Figure 7(b),
which, as mentioned, corresponds to roughly the same point on the S0 mode dispersion
curve, but which had roughly half the frequency (and double the plate thickness).

This comparison shows that it is not only the size of the transducer which determines
the width of the angular spectrum but its frequency as well: the higher the frequency, the

Figure 8. Theoretical (solid line) and experimental (light line, open circles) excitation amplitude versus incident
angle curves for the S0 Lamb wave mode generated at roughly the same frequency thickness product using
different frequencies and layer thicknesses. (a) f=2·25 MHz, layer thickness, d=0·432 mm, therefore,
fd=1·0125 MHz mm; (b) f=0·9 MHz, layer thickness, d=1·016 mm, therefore, fd=0·9144 MHz mm.
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narrower the width of the angular amplitude excitation profile. Notice that this effect is
captured remarkably well in the theoretical prediction with a difference between the −6 dB
widths from theory and experiment of less than 5%. The half angle of beam divergence
for the 2·25 MHz transducer with a nominal diameter of 15·68 mm is a=1·8 degrees.

Note also that although the actual diameters of the transducers used to generate
Figures 8(a) and 8(b) are around 25% different, this difference in size would cause the
opposite effect as that which has occurred (i.e., it would tend to make the two widths
closer), showing that the dominant cause of the difference in width is due to the difference
in frequency.

As a final set of experiments, 2·25 MHz transducers with actual diameters Da =15·68
and 9·72 mm were used to generate modes S1 and S2 at frequency thickness products of
4·572 and 7·143 MHz mm, respectively. The experimental and theoretical amplitude
profiles are shown in Figure 9. Note that there are two peaks present in the experimental
curves of Figure 9. This is due to the simultaneous excitation of S1 and S2. The theory
curve has been generated assuming excitation of only S1 and therefore has only one peak.
Similar observations can be made concerning these profiles as has been made concerning
the others. The width of the amplitude profile of any given mode increases as the actual
size of the transducer decreases. The agreement between theory and experiment generally
degrades as either the nominal size or the driving frequency of the transducer decreases.
Both of these effects cause larger beam spreading which has been completely neglected in
the theory.

It should be mentioned that satisfactory agreement has been obtained between the
theory developed in reference [7] and the current experiments even though the theory was
developed for traction free layers, whereas the layers used in the experiments were
immersed in fluid. Several reasons can be given for the agreement. First of all, the
experiments were performed using water-loaded aluminum plates. Because of the small
acoustic impedance of the fluid relative to that of the plates, the characteristics of the
modes will not, in general, be greatly affected. Secondly, and perhaps more importantly,
in all of the comparisons of theory to experiment, only normalized excitation amplitudes

Figure 9. Theoretical (solid line) and experimental (light line, open circles) excitation amplitude versus incident
angle curves for the S1 and S2 Lamb wave modes. (a) S1 at fd=4·572 MHz mm ( f=2·25 MHz, d=2·032 mm)
with a transducer of actual diameter, Da =9·72 mm; (b) S2 at fd=7·143 MHz mm ( f=2·25 MHz,
d=3·175 mm) with a transducer of actual diameter, Da =15·68 mm.
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are compared. Both the theoretical and experimental amplitudes have been (independently)
normalized to unity maximum. Therefore, although the absolute excitability of any given
mode (i.e., the degree of coupling of the incident beam to the given mode) would change
depending on whether the mode was generated in an immersed or free layer, the
normalized curves would remain relatively unchanged.

7. CONCLUSIONS

Based on the comparisons of theory to experiment for all of the cases presented, it is
concluded that the theory developed in reference [7] gives satisfactory results for predicting
the width of the excitation spectrum of a given Lamb wave mode using a particular
transducer. The discrepancy between theoretically predicted and experimentally obtained
results increases as the beam spread of the source transducer increases. Beam spreading
causes both a widening of the beam waist and a system of non-parallel rays in the incident
beam. While the widening of the beam waist was accounted for by using the actual beam
profiles in the numerical integrations, the non-parallel rays in the beam bundle were
completely unaccounted for in the theory. Also not accounted for in the theory is the
circular nature of the transducers used; in the theory, strip sources (two-dimensional) were
assumed.
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